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ABSTRACT
Large heterogeneous teams will often be in situations where sensor data

that is uncertain and conflicting is shared across a peer-to-peer network.

Not every team member will have direct access to sensors and team mem-

bers will be influenced mostly by teammates with whom they communicate

directly. In this paper, we investigate the dynamics and emergent behav-

iors of a large team sharing beliefs to reach conclusions about the world.

We find empirically that the dynamics of information propagation in such

belief sharing systems are characterized by information avalanches of be-

lief changes caused by a single additional sensor reading. The distribution

of the size of these avalanches dictates the speed and accuracy with which

the team reaches conclusions. A key property of the system is that it ex-

hibits qualitatively different dynamics and system performance over small

changes in system parameter ranges. In one particular range, the system

exhibits behavior known as scale-invariant dynamics which we empirically

find to correspond to dramatically more accurate conclusions being reached

by team members. Due to the fact that the ranges are very sensitive to

configuration details, the parameter ranges over which specific system dy-

namics occur are extremely difficult to predict precisely. In this paper we

(a) develop techniques to mathematically characterize the dynamics of the

team belief propagation (b) obtain through simulations the relation between

the dynamics and overall system performance, and (c) develop a novel dis-

tributed algorithms that the agents in the team use locally to steer the whole

team to areas of optimized performance.

Categories and Subject Descriptors
1.2.11 [Distributed Artificial Intelligence]: Multi-agent systems

General Terms
Algorithms, Experimentation, Theory
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1. INTRODUCTION
1 Large heterogeneous teams will often be in situations where

sensor data that is uncertain and conflicting is shared across a peer-
to-peer network. Not every team member will have direct access to
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sensors and team members will be influenced mostly by teammates
with whom they communicate directly. The effective sharing and
use of uncertain information is key to the success of large hetero-
geneous teams in complex environments because without a correct
understanding of the environment it is not possible to appropriately
plan and act. Typically, noisy information is collected by some por-
tion of the team and shared via the social and/or physical networks
connecting members of the team [1]. Each team member will use
incoming, uncertain information and the beliefs of those around
them to develop their own beliefs about relevant facts. However,
the volume of incoming data relative to bandwidth constraints, will
often make it impossible for agents to communicate all the received
information. Each agent must filter and abstract the information,
communicating only its conclusions. Example applications of such
systems include large scale disaster relief, environmental monitor-
ing, military crisis response etc. [2].

Before such teams are deployed in domains where there are sig-
nificant costs for bad behavior, it is important to understand and,
if necessary, mitigate any system-wide phenomena that occur dur-
ing belief propagation. Understanding the dynamics of the sys-
tem and linking this understanding to overall system performance
is difficult since network-based belief propagation in large hetero-
geneous teams exhibits complex emergent behaviors [3]. Previous
attempts to describe the information dynamics of complex systems
includes describing propagation of fads [4, 3], rumors [5] and gos-
sip[6] through social networks. The key difference between this
work and previous work is that in previous work a single type of
information spread whereas here we can have conflicting data that
fundamentally changes the dynamics. Moreover, we are able to use
agents to predict and control system dynamics in order to guide the
team to areas of optimized performance.

To analyze the dynamics, we model a team as being connected
via a network with some team members having direct access to
sensors and others relying solely on neighbors in the network to in-
form their beliefs. Each agent uses inference over communications
from direct neighbors and sensor data to maintain belief about the
environment. The level of abstraction of the model allows for in-
vestigation of team level phenomena decoupled from the noise of
high fidelity models or the real-world, allowing for repeatability
and systematic varying of parameters. Simulation results show that
the number of agents coming to the correct conclusion about facts
and the speed of their convergence to their belief, varies dramati-
cally depending on factors including network structure and density
and conditional probabilities on information communicated from
neighbors. As found with similar previous models in the liter-
ature, we found that large avalanches (or cascades) of changes
of belief can occur from a single new sensor reading after many
previous sensor readings led to no significant change in beliefs of
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team members. The model also predicts that the wrong belief can
easily cascade through the system, even if an agent knowing all
the sensor data to date would have reached the correct conclusion.
Such avalanches are due to double counting, where agents combine
observations of multiple neighbors, incorrectly assuming indepen-
dence between these observations. This is of great concern in the
development of real systems.

We found empirically that when there was an exponential fre-
quency distribution of avalanche sizes, a situation known as scale
invariant dynamics, there were dramatically fewer instances of prop-
agation of incorrect beliefs. In fact, teams exhibiting belief prop-
agation with scale invariant dynamics can be as much as 50 times
more reliable at reaching correct conclusions than teams whose dy-
namics did not exhibit scale invariance. Moreover, we observed
that in the range where the system exhibits scale invariant dynam-
ics, system convergence is much faster than in the other system
ranges. While the dramatically increased decision reliability (cor-
rectness of the conclusions) makes it highly desirable to have teams
exhibit scale invariant belief propagation dynamics, the model pre-
dicts that this will occur over relatively small ranges of the rele-
vant system parameters. Minor changes in network structure, con-
ditional probabilities assigned to communications from neighbors
and sensor reliability all delicately impact whether scale invariant
dynamics occur making it extremely difficult to predict parameter
ranges over which scale-invariant dynamics occur.

We performed a mathematical analysis of the model, utilizing
techniques from branching processes [7], and determined that the
qualitative dynamics of the system are dependent on the value of
the branching factor. The branching factor is the number of an
agent’s network neighbors that will change their belief when the
agent changes its belief and communicates the change. Scale-invariant
dynamics, i.e. areas of high system performance, correspond to an
average branching factor of 1. While the individual branching fac-
tors of agents vary widely creating the exponential distribution of
avalanche sizes, the average of 1 over the team leads to a balance
between under- and over-estimating confidence in the propagated
information.

In a distributed system where environmental changes and inter-
nal system dynamics are complex, local online adaptation to im-
prove overall system performance is highly desirable. Fortunately,
since the branching factor can be approximated locally, it can be
used to create a local controller that can change system parame-
ters in a way that results in scale invariant dynamics and, hence,
in best information propagation. In this paper, we present a local
controller that either increases or decreases the conditional proba-
bility an agent ascribes to communications from its neighbors de-
pending on its current estimate of its local branching factor. The
local controller is shown to make systems starting in a wide range
of configurations and with very different emergent dynamics begin
to show scale invariant dynamics and improved information prop-
agation performance. We believe that such an algorithm could be
used in a practical, large networked heterogeneous agent system
(including robots and humans) to dramatically improve the time
and reliability with which team members reach correct conclusions
based on large volumes of distributed, noisy sensor data.

2. MODEL
In this section, we formally describe the underlying model used

in the remainder of the paper. The model is intended to be the
simplest model that can capture the complex dynamics of uncertain
information being shared by a cooperative team. A cooperative
team of agents, A = {a1, . . . , a|A|} are connected by a network,
G = (A, E) where E is the set of links in G which connect the

agents in A. An agent ai may only communicate directly with
another agent aj ∈ Nai if ∃ei,j ∈ E where we refer to the set Nai

as its neighbors. The average number of neighbors that the agents

in G have is defined as < d > where < d >=
P

i |Nai
|

|A| .

Sensors, S = {s1, . . . , s|S|} provide noisy observations to the
team. Only one agent can directly see the output of each sensor.
The sensors return binary observations about some fact b from the
set {true, false}. In this paper the correct value of the fact is always
true. We refer to the probability that a sensor s will return a correct
observation as its reliability rs. The reliability of a sensor is known
to the agent that receives observations from it. In the remainder of
this paper, unless otherwise specified, |A| = 1000 , |S| = |A|/20
and rs = 0.55∀s. That is, most agents must deal with relatively
noisy data and do not have direct access to the sensors. For exam-
ple in military intelligence where only a few intelligence analysts
might have direct access to data from sensors like unmanned aerial
vehicles.

A key assumption of the model is that it is infeasible for agents
to communicate actual sensor observations to one another and that
they may only communicate whether they currently believe the fact
to be true, false or if they are undecided, unknown. Although re-
stricting agents to communicating only their conclusions is purely
an abstraction to make working with and understanding the model
easier, we believe that there are many real world domains where it
is infeasible to communicate actual sensor readings. For example,
sensor data might be video or audio recordings than are expensive
to share on a large network and require significant effort and skill
to interpret, or sensor data might be secret, or physical specimens
that cannot be shared. If there are large numbers of sensor read-
ings, restricted communication channels and many facts that a large
number of agents need to come to conclusions about, we expect it
to be infeasible to send most types of raw sensor data.

Each agent ai uses either an observation received from a sensor
or conclusions about b communicated by neighbors to form a belief
Pai(b → true) about b. A new observation is incorporated into the
current belief to form a new belief P ′

ai
(b → true) using Equation

1 an expression of Bayes’ Rule.

P ′(b → true) =
P (b → true) ∗ cp

P (b → false) ∗ (1 − cp) + P (b → true) ∗ cp
(1)

Where cp = P (b → true/o → true) and o is an observa-
tion. Each observation from a sensor is treated as an independent
observation. Only the last communication from any neighbor is
treated as an observation. Observations from different neighbors
are treated as independent in the application of Bayes’ Rule. The
treatment of observations of neighbors as independent is not cor-
rect, since they may have come to their conclusions based on the
same data. Hence, agents relying on neighbors to reach a con-
clusion will inevitably be over-confident in their conclusions. We
refer to this effect as double counting. Without communicating ac-
tual sensor data or having detailed knowledge of the entire network
structure and message sequence, it is impossible to completely re-
move double counting.

An agent ai will communicate true if Pai(b → true) > σ and
false if Pai(b → true) < 1 − σ. Unless otherwise specified
σ = 0.8. If the communication causes a neighbor’s belief to cross
a threshold, it too will communicate with all its neighbors. We refer
to this as an avalanche. In the simulation of the agent team, when
an agent receives a sensor reading, we allow the resulting avalanche
to stop propagating before introducing any subsequent sensor read-
ings to the system. The probability P (c) that c agents change their
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belief during an avalanche is a key measure of the dynamics of the
system used throughout the remainder of this paper.

The most important metric for each agent and for the team over-
all is reliability, ra for a single agent and R for the whole team de-
fined as ra = total correct conclusions/total incorrect conclusions
and R =

P
i ri/|A|. If agents connected to sensors did not com-

municate until a very large number of sensor readings arrived, they
could be very confident their conclusions was correct and the team
would be very reliable. However, the team would also be very slow
to make decisions and would not leverage the presence of multiple
sensors. We use a second metric, convergence time, Cn, as the time
it takes for n agents to reach the same conclusion. Below, we use
n = 0.8|A|.

3. ANALYSIS OF MODEL DYNAMICS
In this section we develop equations that express the dynamics

of information propagation in large teams. Specifically we develop
equations which relate the system parameters to P (c), the prob-
ability that an avalanche will encompass c agents as a result of a
single sensor observation.

For this analysis it is assumed that the network G has a random
topology with |A| → ∞. These two assumptions taken in con-
junction imply that there are no loops of neighboring agents in the
network. These assumptions allow us to formulate avalanches of
belief changes in the system as a branching process parameterized
by a branching ratio α [7]. In our system α is the average number
of neighbors of an agent ai that change their belief as a result of a
belief change communication from agent ai. For a given α, P (c)
follows directly from the theory of branching processes:

P (c) ∝ c−3/2exp

„
− ωc

(1 − α)−2

«
(2)

where ω is a proportionality constant. In Equation 2, c is the in-
dependent variable, leaving only α, which is dependent on the sys-
tem parameters cp and < d >, to determine overall dynamics. α,
the number of an agent’s neighbors changing belief when the agent
communicates a new belief averaged over the team, is equivalent to
the expected value of the number of neighbors that change belief
when a random agent changes belief. This is expressed by Equa-
tion 3 where pq is the probability that if a random agent changes its
belief and communicates with its neighbors, q of them will change
their belief as a result.

α =

<d>X
q=0

qpq (3)

Thus, we know that the probability of an avalanche of a certain
size depends on the probability that the belief of a random neighbor
exceeds one of the thresholds as a result of receiving a communi-
cation. We can compute this value by considering the distribution
of possible belief ranges that a neighbor could be in. We discretize
the belief P (b → true) ∈ [0, 1] of an agent as follows: Let F rep-
resent the belief range [0, 1 − σ] and T represent the belief range
[σ, 1] (an agent with a belief in the former range would commu-
nicate false and would communicate true in the latter range). We
define no such that an agent with a belief in either of these ranges
would need to receive no observations to enter the opposite belief
range. For a fixed value of σ, as cp increases the number of ob-
servations conflicting with its belief that an agent would need for
this to occur decreases. Following this intuition no is a function of
cp, no(cp) which is strictly decreasing with a range (1,∞). Next,
we discretize the belief range between the F and T ranges into

no distinct ranges and associate with these ranges the symbols U0,
U1, . . . , Uno . We can then express the evolution of the beliefs of
agents as transitions between these belief ranges due to received
communications. Note that, given the preceding definitions, Un1

and Uno are the belief range where a single additional false or true
observation respectively will cause an agent to change belief and
communicate the corresponding belief. Define P (Uno) to be the
probability that a random agent will have a belief in the Uno range
and P (Un1) the probability that a random agent has a belief in the
Un1 range. Without loss of generality we can define P (Ucrit) such
that P (Ucrit) = P (Uno) for a true sensor observation initiating
an avalanche and P (Ucrit) =P(Un1) for a false observation. We
can then define pq in terms of P (Ucrit). Assuming independence
between neighbors, the probability that exactly q neighbors will
exceed either threshold is simply the product of the q individual
probabilities, P (Ucrit) that a random agent in the team will exceed
a threshold after receiving a communication and the < d > −q
probabilities 1−P (Ucrit) that the remaining neighbors will not ex-
ceed the threshold. This relationship is expressed by Equation 4
[8], where the binomial coefficient reflects that neighbors are inter-
changeable.

pq =

 
< d >

q

!
P q(Ucrit)(1 − P (Ucrit))

<d>−q
(4)

Combining Equations 3 and 4 yields Equation 5:

α =< d > P (Ucrit) (5)

which gives the relationship between < d > and α. To complete
the relationship between α and the remaining system parameters,
we need to find the relationship between P (Ucrit) and the parameter
cp. We can calculate P (Ucrit) by using the mean field assumption
that at time t, P (Ucrit) = Uno(t) for a true sensor observation and
P (Ucrit) = Un1(t) for a false one, where Uno(t) and Un1(t) are
the percentages of agents with belief in the corresponding ranges
at time t. Functions for both Uno(t) and Un1(t) can be obtained
by solving the system of difference equations which express the
dynamics of transitions between the belief ranges of the agents as
they communicate. These equations are given by:

F (t + 1) = F (t) − nt < d > F (t)

Ui(t + 1) = Ui(t) + nt < d > U(i−1)(t) − nt < d > Ui(t)

T (t + 1) = T (t) + nt < d > UTno(t)

F (t) +

noX
j

Uj + T (t) = 1

(6)

Each equation corresponds to the dynamics of transitions into
and out of one of the discrete belief ranges. The equations which
govern transitions into and out of the U belief ranges are identical.
To avoid duplication of equations, we include a single generic equa-
tion in terms of Ui where the range of i is given by (1, . . . , no). In
the equations nt is the total number of agents whose belief exceeds
a threshold and communicates at time t. The second equation, for
i = 2, governs the number of agents with a belief in the U2 range at
time t + 1. This is equal to the number of agents with belief in the
U2 range at time t plus the number of agents whose belief enters
the U2 range from the U1 range at time t as a result of receiving
a true reading. Subtracted from this is the number of agents that
enter the U3 range at time t. The number of agents that enter from
this belief range from the U1 range is proportional to nt ∝ T (t),
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which is the number of agents that an agent changing its belief
communicates with, and the number of agents in the U1 range. The
attractors of the system dynamics correspond to the fixed points
of these equations expressed in terms of the percentage of agents
having a belief in each range: There is one non-trivial fixed point:
F (t) = 1/(2no + 2), Ui = 1/(2no + 2) for i = 0, 1, . . . , no and
T (t) = 0. which yields P (Uno) = Uno = Un1 = 1/no(cp) + 2.
Note that, depending on the type of sensor observation that started
the avalanche (true or false) the signs on the terms in Equations 6
would be opposite. However, such a change from a true to a false
sensor observation simply exchanges the values of F (t) and T (t)
in the fixed point. The values of either fixed point substituted into
Equation 5 yields the same result:

α =< d > /(no(cp) + 2) (7)

Recall that no(cp) is the number of sequential observations, having
the same truth value, that would be required to change the conclu-
sion of an agent starting with a belief in opposition to those ob-
servations. Knowledge of no allows us to pick values of cp which
give us desired values of α corresponding to dynamics beneficial
to team performance. To this end we calculate no(cp) by empiri-
cally inputting values of cp into Equation 1 and finding the number
of observations required to move a prior belief at either end of the
belief range to the other end of the range. The result is then inte-
grated over a range of prior beliefs. The resulting plot of no(cp) vs
cp is given by Figure 1. In the next three sections we show that the

Figure 1: Plot of the function no(cp).

system exhibits three distinct qualitative dynamics, each resulting
in drastically different team performance, depending on the value
of α. Equipped with Equation 7 and Figure 1 we can choose values
of cp and < d > that result in an α that corresponds with dynamics
that give optimal team performance.

3.1 Scale Invariant Dynamics
In this section we discuss the qualitative dynamics of the system

when parameters cp and d are chosen such that
α =< d > /(no(cp) + 2) = 1. When this condition is satisfied
Equation 2 reduces to:

P (c) ∝ c−3/2
(8)

This is the defining characteristic of a scale-invariant distribu-
tion. Recall that n0(cp) is a decreasing function of cp that gives the
number of sequential observations in conflict with its belief that an
agent must receive before changing belief. Since the function no is
strictly positive and decreasing, for a given value of < d > there
is a unique value of cp that results in α = 1. When P (c) is dis-
tributed according to Equation 8, a plot of log(P (c)) vs log(c) is a
straight line with a slope of −3/2. A probability distribution with
this characteristic is traditionally known as a scale invariant dis-
tribution. This is because the ratio

P (βc)
P (c)

for an arbitrary scaling

constant β is independent of c. The practical consequence of this

is that there is no threshold in the size of an avalanche where the
probability of an avalanche of that size becomes zero. This means
when the dynamics of the system are governed by Equation 8 there
is a significant probability that avalanches of all sizes will occur.
However, Equation 8 also tells us that small avalanches will occur
relatively much more frequently than large ones. We refer to the
dynamics expressed by Equation 8 as scale invariant dynamics.

We conducted an experiment to test the validity of Equation 8
as a qualitative description of the dynamics of the system when
α = 1. We simulated the system using parameter value |S| =
1/20|A|, < d >= 8, and |A| = 1, 000; 10, 000; 50, 000. With
< d >= 8, we found from the plot of Figure 1 and Equation 7 that
cp = 0.63 gives α = 1, and used this value in the experiment. The
results for other values of < d > and the corresponding cp that
give α = 1 were similar but we omitted them to conserve space.
Figure 2 shows the resulting plot of the log of the frequency that
an avalanche of a certain size occurred during 10000 simulations
of the system vs. the log of the size of the avalanche. Included

Figure 2: The avalanche distribution approaches the theoreti-
cal distribution as |A| is increased.

in the figure is the theoretical prediction of a straight line with a
slope of −3/2 given by Equation 8. We see from the figure that as
the number of agents |A| is increased, the avalanche distributions
approach the theoretical distribution. This is to be expected as the
analysis was conducted with the assumption of a system of infinite
size.

3.2 Stable Dynamics
In this section we discuss the qualitative dynamics of the system

when α =< d > (1/(no(cp) + 2)) < 1. For parameter ranges
that satisfy this inequality Equation 2 reduces to Equation 9:

P (c) ∝ c−3/2exp

„
− c

(1− < d > /(no(cp) + 2))−2

«
(9)

In this parameter range the exponential factor shown in Equation
9 has a negative sign, which means that the probability of larger
avalanches relative to the system size drops dramatically. This is
in stark contrast to the scale invariant dynamics where avalanches
of all sizes were probable. Equation 9 tells us that perturbations to
the system caused by sensor inputs are quickly curtailed. For this
reason we refer to these dynamics as stable dynamics.

We conducted an experiment to test the validity of Equation 9
as a qualitative description of the dynamics of the system when
α < 1. We simulated the system using parameter value |S| =
1/20|A|, < d >= 4, and |A| = 1, 000. With < d >= 8, we
found from Equation 7 that cp < 0.63 gives α < 1. Figure 3 shows
the resulting plot of the log of the frequency that an avalanche of
a certain size occurred during 10000 simulation runs of the system
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vs. the log of the size of the avalanche. The figure shows the result
when cp = 0.55 but other values of cp < 0.63 give similar results.

Figure 3: Avalanche Distribution for α < 1.

3.3 Unstable Dynamics
In this section we discuss the qualitative dynamics of the system

when α =< d > (1/(no(cp)+2)) > 1, For parameter ranges that
satisfy this inequality Equation 2 reduces to Equation 10:

P (c) ∝ c−3/2exp

„
c

(1− < d > /(no(cp) + 2))−2

«
(10)

Equation 10 is identical to 9, except the sign on the exponen-
tial term is positive. Consequently, in this parameter range large
avalanches are enhanced and are much more probable than in the
other parameter ranges.

We conducted an experiment to test the validity of Equation 10
as a qualitative description of the dynamics of the system when
α > 1. We simulated the system using parameter values |S| =
1/20|A|, < d >= 4, and |A| = 1, 000. With < d >= 4, we
found from Equation 7 that cp > 0.63 gives α > 1. We used the
value cp = 0.8 for this experiment. Figure 3 shows the resulting
plot of the log of the frequency that an avalanche of a certain size
occurred during 10000 simulation runs of the system vs. the log
of the size of the avalanche. We see from Figure 4 that the system

Figure 4: Avalanche Distribution for α > 1.

behavior is in good agreement with the qualitative prediction of
Equation 10. The figure shows that almost 50% of the avalanches
that occurred during 10000 simulation runs were of size 1000, the
system size.

4. PERFORMANCE OF DYNAMICS
We found empirically that the performance of the team measured

by the metric was up to 1000 times better than in other parame-
ter ranges, when the parameter cp was chosen relative to < d >
such that α = 1 and the avalanche distribution was governed by
the scale-invariant distribution given by Equation 8. Furthermore,
the convergence time 800, the time for 0% of the team to come to
the correct conclusion, was simultaneously very low. This result,
shown in Figure 5, is the result of an experiment where we inves-
tigated the average reliability R and the convergence time C800

as a function of cp the conditional probability that agents assign
to communication from their neighbors. The experiment was con-
ducted using |S| = 1/20|A| and < d >= 8. The figure shows
that the team’s performance is clearly optimized for cp = 0.63.
From Figure 1, no(0.63) = 6. Plugging into Equation 7 yields,
α = 8/(6 + 2) = 1 which corresponds with scale invariant dy-
namics. We also see that the performance of the team, measured
via both reliability and convergence time, is extremely sensitive to
cp. The figure shows how R peaks dramatically while C800 is very
small. As cp is increased, reliability goes up at first slowly and
then very dramatically before falling off even more dramatically.
The convergence time drops dramatically at the high end of the cp
spike. Notice that for high cp, C800 is high because there is not
agreement by 80% of the team even after a long period. The opti-

Figure 5: R vs cp, the peak which is several orders of magni-
tude larger than the surrounding points occurs at α = 1.
mal reliability for cp = 0.63 and α = 1 can be understood in terms
of the system dynamics. The frequent smaller avalanches prevent
the system from overreacting to incorrect data, however though less
frequent, large avalanches occur and disseminate these locally vet-
ted decisions to the rest of the system. These local decisions then
mix further improving the conclusions that agents come to. This
hypothesis is supported by the results given by Figure 6. This Fig-
ure shows a scatter plot of the size of an avalanche against the aver-

age belief of the team in the previous time step:
P

i Pai
(b→true)

|A|
(only avalanches that encompassed more than 50% of the team
were included, smaller avalanches were omitted to make the figure
readable). The points in the plot were also split by the decision true
or false being propagated by the avalanche represented by a point.
The leftmost plot of Figure 6 shows that when cp = 0.63, the large
avalanches exclusively propagate the correct belief of true. This
supports the assertion that the frequent small avalanches allowed
agents near to the sensors to come to more reliable conclusions
which were then disseminated by avalanches of correct decisions.
We see from Figure 3 that the system behavior is in good agreement
with the qualitative prediction of Equation 9. The figure shows that
avalanches of size greater than 10 never occurred during the 10000
simulation runs of the system.

Figure 5 shows that reliability of agent decisions as measured
by R is extremely poor for stable dynamics (when cp < 0.63 and
α < 1). These results can be be explained by the dynamics of the
system in this parameter range as expressed by Equation 9. Perfor-
mance in this range is poor because only relatively few agents, the
ones separated from a sensor in the network by only a small num-
ber of intermediate agents, ever receive any information. This also
explains the high convergence time. Small avalanches means that
there is never a consensus among a significant portion of the team.

Figure 5, shows that the reliability of agents decisions is low in
this parameter range (cp > 0.63 and α > 1) This poor perfor-
mance is due to the bias towards large avalanches in this range.
This bias means that an avalanche started by a single new sensor
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Figure 6: When α = 1 large avalanches only propagate correct
information.

reading will, with high probability, encompass a large percentage
of agents in the system, including agents who have previously come
to a decision that contradicts the new sensor reading. With a low
sensor reliability (sr = 0.55 in this paper), sequential sensor read-
ings will often be conflicting and consequently agents will change
belief often. These frequent changes means that the decisions of
individual agents do not reflect the trend in the data, instead they
reflect the sensor reading that triggered the last avalanche which
reached that agent. The consequence is that the sensor reliability
is an upper bound on the average reliability of the system. This
also explains the high convergence time in this region. To converge
to a stable decision in this parameter range, an agent will need to
receive a stream of consistent observations. The probability of this
occurring is very low and consequently will take a long time to
occur. Because of the instability of the decisions of agents in this
parameter range, we refer to these dynamics as unstable dynamics.
This assertion is supported by the rightmost two plots of Figure 6.
These were generated in the exact same manner as the leftmost plot
except cp is set to 0.7 and 0.8 respectively. These figures show that
for α > 1 large avalanches frequently disseminate both correct and
incorrect decisions to large portions of the team. We can also see
that as cp increases, these large avalanches increasingly occur when
agents are very uncertain (average team belief 0.5) meaning that
the system is becoming increasingly unstable.

5. NETWORK VARIATION
The analysis of Section 3 made a key assumption about the net-

work to simplify the mathematics of specifying the relationship be-
tween α, which characterizes system dynamics and system param-
eters cp and < d >. This assumption was of an infinite random
network with no loops of neighboring agents. Furthermore, the
analysis implicitly assumed that < d >, the average number of
links per node, is an accurate characterization of the local struc-
ture of a network by making use of it in probability calculations of
agent interactions. However, other communication network struc-
tures that might be used in real-world teams, deviate significantly
from these assumptions. In this section, we empirically investigate
variations from the predictions of Section 3 that result when other
communication network structures are employed.

A particularly surprising result stemming from our investigation
was that even networks generated with the same generating func-
tion exhibited dramatic differences in average performance of the
network. Figure 7 shows the distribution of reliability and con-
vergence times for 100 instances of a scale-free network generated
with exactly the same parameters. 10,000 runs are used to gen-
erate each point and the same random seed for generating sensor
data is used to minimize noise in the results. A cp of 0.68 was
used, having been found to be a good value for this type of net-
work. The networks are statistically very similar, the only differ-
ences are minor linking differences caused by randomness in the

generation process. Notice that there is a difference of up to a fac-
tor of 20 between the best and worst performing networks. This
indicates that minor topological details are important as well as the
general structure. This is in contrast with the predictions of Sec-
tion 3 that α, the value of which was found to be an important
indicator of performance, is uniquely determined by < d > for a
fixed value of cp. This discrepancy is likely due to the fact that
< d > does not accurately reflect the local structure of a ScaleFree
network. Unlike, a large random network where the variance on
< d > would be very low, for a ScaleFree network the variance
of < d > is very high. This means that although the networks
shown in Figure 7 have similar values of < d >, the minor topo-
logical differences cause variances differences which in turn impact
the value of α and performance. The performance of a particular

Figure 7: Variation of R within 100 instances of ScaleFree net-
works generated with the same stochastic parameters.

team also turns out to be very sensitive to the particular characteris-
tics of the network connecting them. To investigate the differences
in performance between networks generated with different gener-
ating functions we conducted experiments to in which we looked
at performance differences between different network types as link
density < d > is varied. The networks used in the experiment are
generated from standard generation algorithms and were chosen
to represent a range of possibilities that may occur in real systems.
For each of the network types, we found the cp value (to the nearest
0.02) that maximized the performance as measured by the metric
R for 100 networks of that type. Then the 100 networks of each
type was run 1000 times and the average performance computed.
Figure 8 shows the average reliability R of all the networks. Figure
9 shows the best cp value for each network type and corresponding
density < d >. The network types are abbreviated in the table as
R for Random, SF for ScaleFree, SWG for SmallWorldGrid, and
SWR for SmallWorldRing respectively. Two things are clear from
the figures. First, some general network structures are better than
others. The difference in performance between network types is
both due to the differences in variance in < d > between different
network structures as well as the degree to which agents in a partic-
ular network type tend to share neighbors, creating loops of agents.
When an agent’s neighbors share mutual ancestors that are a part of
an avalanche, the same avalanche might reach that agent multiple
times. The result is an increase in the probability that the agent will
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Figure 8: Variation of R, and C800 with network type and density <d>.

receive enough observations to change belief and continue propa-
gating the avalanche. This effect will tend to offset the scale invari-
ant dynamics by increasing the proportion of large avalanches in
the avalanche distribution. The result is a decrease in performance
depending on the degree to which the network structure forms loops
of agents. This is a possible explanation for the relatively poor per-
formance of the Grid network structure which contains many loops
of agents.

Networks with a small worlds property performed better than
those without. This is possibly because the small worlds property
of the network enhances the scale invariant dynamics which we
have shown to be beneficial to team performance. These networks
have highly structured local subnetworks and these local subnet-
works are joined by a few random links. The dense local subnet-
works mean that most information exchange occurs locally, while
the few random links which join them encourage mixing between
results generated in local subnetworks.

The average degree of the network makes less of a difference to
overall performance than the type, but for most network types it
dramatically influences the best cp for that network. In addition,
for a particular network type, the best cp drops as < d > increases.
This can be explained qualitatively by the expression for α: α =<
d > /((no(cp)+2)). Recall that no(cp) is a decreasing function of
cp. From the expression for α we can see that as < d > increases
α increases moving away from 1. Decreasing cp increases f which
in turn decreases α back towards 1 where performance is optimal.
The high level conclusion from this experiment is that deviations
in the network from the idealization used in the analysis of Section
3 means that it is very difficult to calculate the values of cp for a
given network that results in good performance.

< d > 4 6 8 10 16 18 24
SF 0.70 0.62 0.60 0.58 0.58 0.58 0.56
R 0.74 0.66 0.63 0.62 0.58 0.58 0.56

SWG 0.72 0.72 0.72 0.72 0.70 0.74 0.72
SWR 0.72 0.72 0.72 0.72 0.70 0.74 0.72

Figure 9: The value of cp that results in the highest value of
decision reliability R for each network type/link density < d >.

6. INTERACTION MANAGEMENT
The analysis of Section 3 shows that the communication dynam-

ics of a network of cooperative agents will follow one of three qual-
itatively different avalanche distributions namely, stable, scale in-
variant, and unstable, depending on the values of the parameters <
d > and cp. This section also showed that of these three avalanche

distributions, the scale invariant avalanche distribution expressed
by Equation 8 is optimal in terms of the reliability of agent deci-
sions R. However, the experiments of Section 5 showed that the
variance on < d > has a dramatic effect on α and hence perfor-
mance, even between networks generated using the same gener-
ating functions. For real systems the network structure is given
and hence < d > and its variance are also given. However be-
cause of the complexity of such systems it would be very difficult
in practice to determine < d > with enough precision to pick the
corresponding cp that would result in the highest possible perfor-
mance. Furthermore, real systems are dynamic, meaning that the
values of < d > and its variance are likely to change over time
which would in turn also change the cp that would give optimal
performance. The key observation however is that α = 1 results in
scale invariant dynamics and optimal performance. To overcome
the practical difficulties in picking the best cp for a network we de-
veloped a distributed algorithm called DACOR (Distributed Adap-
tive Communication for Overall Reliability) that an agent ai can
use to dynamically tune its cp to achieve a local branching ratio of
αai = 1 in an attempt to cooperatively achieve α = 1 resulting in
optimal performance for the team. The pseudocode for DACOR is
given by Algorithm 6. In line 1 of the algorithm the agent calcu-

Algorithm 1: tune local branching ratio.
DACOR()
(1) αa = (αa ∗ (uA− 1)/uA)+ (pC/uA)

Δα = αa − 1
(2) foreach aj ∈ N
(3) a → SENDMESSAGE(aj , Δα)
(4) aj .cp = aj .cp(Δα)∗γ−(Δα′)∗β
(5) if aj .cp > cpmax

(6) aj .cp = cpmax

(7) else if aj .cp < cpmin

(8) aj .cp = cpmin

lates its local α, where pC is the number of the agent’s neighbors
that changed belief and uA is a factor that weights more recent lo-
cal observations of α higher in the average. In lines 2-3 the agent
then sends its approximation of the local α to its neighbors. In line
4 the agent’s neighbors then update their cp values proportional to
Δα = α − 1 and its derivative Δα′. The remaining lines are to
ensure that the neighbors cp values remain in the range [0,1] since
cp is a probability. We ran an experiment to test the efficacy of DA-
COR in tuning cp to improve the performance of the agent team.
We used |A| = 1000, |S| = 50, and < d >= 4. In the experiment
we hand tuned cp to give the best performance for several different
network types. Next we allowed the agents to tune cp using DA-
COR. Each result using DACOR is an average over 100 simulation
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network type R tuned C800 tuned R DACOR C800 DACOR
ScaleFree 1.62 14.00 1.27 13.00

Small World Ring 1.43 244.00 1.08 7.00
Random 16.00 61.00 12.57 61.00

Figure 10: Comparison between performance of teams using hand tuned cp vs cp tuned by agents running DACOR.

runs, with a randomly chosen initial cp. The results are shown in
Figure 10.

7. RELATED WORK
There have been several studies conducted to investigate models

whose dynamics are governed by cascades on complex networks.
These include models of fads[4, 3], rumors [5], gossip[6], forest
fires [9], and diseases[10, 11]. Common to all of these models is
that the dynamics are governed by the spreading of a single in-
fluence. In contrast, our model investigates competing influences
which significantly alters the dynamics of a system. Many of the
systems under study in these studies fall into the category of self-
organized critical systems, which exhibit scale invariant dynamics
over large parameter ranges[12]. In contrast, we found that very
small changes in the conditional probability assigned to informa-
tion from neighbors in our model could cause the team to exhibit
other types of dynamics.

In [13], Parunak presents a model of the collective convergence
of agents to a cognitive state. This model is similar to ours in
that it does include multiple states that agents can converge to and
hence competition between states. In addition, similar to our work,
Parunak also uses a mean field approach to simplify analysis of the
system. Parunak focuses on studying the macroscopic performance
of the system. We build upon Parunak’s investigation by analyzing
the dynamics of the system directly and investigating the relation-
ship between the dynamics and the performance of the system. Our
work further investigates a distributed algorithm for encouraging
dynamics which are beneficial to system performance.

Recently there has been significant interest in social networks
[14], [15] and the impact of those networks on performance of
a group. For example, Xu looked at the impact of networks on
routing information to a specific agent [16]. Kleinberg, looked
at the impact of the network on the performance of decentralized
search algorithms [17], when a single agent has information valu-
able to the system. We build on both of these contributions by
investigating the case when a large percentage of the agents in the
team are both sources and sinks for information, which fundamen-
tally changes the dynamics of information exchange in the system.
Boyd has looked at the impact of networks on decentralized gossip-
based information dissemination [6], our analysis method could
be utilized to understand the dynamics of information exchange in
Boyd’s model.

8. CONCLUSIONS AND FUTURE WORK
This paper presented a model that suggests that when a network

of cooperative agents exhibits scale invariant dynamics, the speed
and reliability with which the team can converge to correct conclu-
sions, despite noisy data and highly limited communication is dra-
matically increased. Unfortunately, theoretical predictions of pa-
rameter values over which scale-invariant dynamics occur is pred-
icated on an infinite random network. We showed that deviations
of some network types and configurations from this ideal makes it
extremely difficult to select parameter values that result in scale-
invariant dynamics. We further, showed that performance varied
greatly depending on network type and that there was considerable
variance even for very similar networks. To overcome the diffi-

culties of parameter selection for scale invariant dynamics, the pa-
per presented an algorithm that allows agents to make local adjust-
ments to conditional probabilities on neighbors observations that
move the team towards the parameter range where scale invariant
dynamics occur for any network type, thus dramatically improving
its performance. This algorithm minimizes disruptions to the over-
all network, making it practically applicable in real world systems.

In future work, we propose to extend the model to capture ad-
ditional features of information sharing, including beliefs of sev-
eral variables and a richer communication model, while maintain-
ing the mathematical simplicity that allows the types of detailed
analysis above. We also intend to simulate features that are harder
to model mathematically, such as the ways mobile sensors might be
redeployed based on initial conclusions and how other coordination
activities can influence belief convergence.
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